Google I/O 上的图灵奖得主:机器智能真会梦到电子

发布时间:2019-05-31 12:36 编辑:西极电力网

在 Google I/O 2019 的第三天,图灵奖最新得主、Google Brain 高级研究员 Geoffrey Hinton 在现场同《连线》杂志现任主编 Nicholas Thompson 进行了一场对话访谈。尽管是开发者大会的最后一天,而且访谈被安排到了午饭时段,但这仍成为了本年度 Google I/O 除首日官方 keynote 之外最引人关注的一场活动。

Hinton 在上世纪 80 年代提出了以人工神经网络作为机器学习研究基石的想法,但在之后的很长时间里,他的观点都被学界和业界视为「边缘事物」,甚至是一种「一厢情愿」。直到进入新世纪,随着计算机运行的速度的大幅提升,深度神经网络有了海量可供训练的数据,人工智能终于迎来了新局面。

2012 年,,Hinton 带领两名学生提出深度卷积神经网络模型 AlexNet,在图片识别上取得了重大突破,他多年研究工作的重要性才被整个业界认可。除了戴上「深度学习教父」的花冠,Hinton 在两个月前同 Yoshua Bengio 和 Yann LeCun 一起,被授予了 2018 年图灵奖。

Yann LeCun, Geoff Hinton, and Yoshua Bengio | WIRED

因为背痛而多年都只能站立工作的 Hinton 站着完成了这场对话,就像在现场介绍视频里他调侃的那样,他远远领先于当下的「潮流」。在他的专业领域也是同样。图灵奖之后,这位鲜少接受采访的天才在这次对话中谈到了自己的研究,对机器智能的信心和期望,以及未来的世界和梦境的启迪。

以下是极客公园前方记者从现场发回的访谈实录,经极客公园编辑整理,有删减。


Q:Nicholas Thompson

A:Geoffrey Hinton

Geoff Hinton 亮相 Google I/O | 极客公园前线记者

Q:20 年前,当你发表了一些有影响力的文章。每个人都说,这是个好点子,但是事实上我们没法这样设计计算机。跟我们聊一聊,你为什么坚持,为什么你就相信自己的发现很重要?

A:实际上那是 40 年前了。对我来说,人脑工作只有一种方式——通过学习神经元之间连接强度来工作。如果你想要一件设备做一些智能的工作,你有两个选择,你可以自己编程或者让机器自己学习,我们当然不选择编程,我们只能想办法让机器学习。所以(我认为)这一定是正确的方式。


Q:在座的大多数人对神经网络都很熟悉了,但还是请你解释一下最初的想法,以及它是如何在你的脑海中形成的。

A:相对简单的处理元素,也就是松散的神经元,它们连接在一起,每个连接点都有一个权重(weight),通过改变连接点上的权重去学习。神经元所做的是将连接点上的活动乘以权重,把它们加起来,然后决定是否发送一个输出。如果和足够大,就发送一个输出,如果和是负的,它就什么也不发送。你需要做的就是把无数的权重连接起来,然后找到调节权重的方法,然后神经网络就能做一切事情。所以这就是一个调节权重的问题。


Q:那么,你是什么时候开始知道它的工作原理是近似大脑的呢?

A:神经网络一直是这样设计的,它模拟了大脑工作原理。


Q:所以在你职业生涯的某个时候,你开始了解大脑是如何工作的,也许是在你 12 岁的时候,也许是在你 25 岁的时候,你什么时候决定用计算机模拟大脑工作原理?

A:这就是问题的关键。神经网络的整个想法是有一个像大脑一样学习的设备,像人们认为大脑通过改变连接强度来学习一样,这不是我的想法。图灵也有同样的想法,尽管他发明了很多标准计算机科学的基础,他相信大脑是一个没有组织,有随机权重的装置,它使用强化学习的方式来改变连接,它会学习一切。他认为这是获得智能的最佳途径。


Q:所以你遵循图灵的想法,制造机器最好的方法就是模仿人类的大脑。这就是人脑的工作原理,让我们造一个这样的机器。

A:这不仅仅是图灵的想法,很多人也这样想。


Q:所以你有这样的想法,很多人都有这样的想法。你在 80 年代末得到了很多赞誉,因为出版的作品而出名,对吗?

A:是的。


Q:最黑暗是什么时候?那些曾经支持图灵想法的人都开始退缩了,但你却继续向前是什么时候?

A:总有一群人一直相信它,尤其是在心理学专业。但是在计算机科学家中,我想在 90 年代,当时数据集非常小,计算机没有那么快。在小数据集处理上,其他的方法,比如支持向量机(support vector machines)能达到更好的效果,不会被噪音影响。这非常令人沮丧,因为我们在 80 年代发展了反向传播(back propagation),我们本认为这项技术可以解决所有问题,但是结果相反。这只是一个规模的问题,但我们当时并不真正了解它们。


Q:那你为什么认为这行不通呢?

TAG: 昆明seo顾问 seo引擎搜索 刷流量seo 巧说seo 逐鹿seo seo原创文章 成都专业seo 胡水生seo 乐云seo 网络seo点评 香港seo优化 设计seo 杭州seo优化服务 seo关键词排名 职位 seo 珠海seo公司 小猪seo 开封seo 装逼seo 重庆seo外包

上一篇:小白学第二弹:Google平台Tensorflow Playground 下一篇:新车图解:全新奥迪Q5 快来,就等你了!

相关阅读

精彩推荐